Floating sidebar


Wednesday, July 19, 2017

Evaluation of anti-inflammatory properties of herbal drugs: how useful could be ATR-FTIR spectroscopy?


Inflammation is a hallmark of some of today's most life-threatening diseases such as arteriosclerosis, cancer, diabetes and Alzheimer's disease. Herbal medicines (HMs) are re-emerging resources in the fight against these conditions and for many of them, anti-inflammatory activity has been demonstrated. However, several aspects of HMs such as their multi-component character, natural variability and pharmacodynamic interactions (e.g. synergism) hamper identification of their bioactive constituents and thus the development of appropriate quality control (QC) workflows. In this study, we investigated the potential use of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy as a tool to rapidly and non-destructively assess different anti-inflammatory properties of ethanolic extracts from various species of the Genus Lonicera (Caprifoliaceae). Reference measurements for multivariate calibration comprised in vitro bioactivity of crude extracts towards four key players of inflammation: Nitric oxide (NO), interleukin 8 (IL-8), peroxisome proliferator-activated receptor β/δ (PPAR β/δ), and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Multivariate analysis of variance (MANOVA) revealed a statistically significant, quantitative pattern-activity relationship between the extracts' ATR-FTIR spectra and their ability to modulate these targets in the corresponding cell models. Ensemble orthogonal partial least squares (OPLS) discriminant models were established for the identification of extracts exhibiting high and low activity with respect to their potential to suppress NO and IL-8 production. Predictions made on an independent test set revealed good generalizability of the models with overall sensitivity and specificity of 80% and 100%, respectively. Partial least squares (PLS) regression models were successfully established to predict the extracts' ability to suppress NO production and NF-κB activity with root mean squared errors of cross-validation (RMSECV) of 8.7% and 0.05-fold activity, respectively.

Evaluation of anti-inflammatory properties of herbal drugs: how useful could be ATR-FTIR spectroscopy image 1

Tuesday, July 11, 2017

Nutrigenomics in cancer: revisiting the effects of natural compounds


Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.

Nutrigenomics in cancer: revisiting the effects of natural compounds image 1

Wednesday, July 5, 2017

Human Microbiome Project: A Brand Makeover Opportunity

Guest post by Sudhir Ahluwalia.

The Human Microbiome Project (HMP) launched in 2008 as an extension of another ambitious global project—the Human Genome Project. HMP seeks to understand the metagenome (the combined genomes of all the microbes) of 300 healthy people. Five body areas are being sampled: skin, mouth, nose, colon and vagina.
The project is generating a huge amount of scientific research aimed at achieving a better understanding of gut-based microorganisms. As we understand the role and dynamics of these microorganisms (collectively, we can also call them the microbiome), we get to better appreciate their role in maintaining health and in helping to prevent and treat many ailments.

Human Microbiome Project: A Brand Makeover Opportunity immage 1

Saturday, July 1, 2017

Microbiota in Obesity and Metabolic Diseases: Effects by Medicinal Plant and Food Ingredients


Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term “diabesity.” Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.